Централизованное тестирование по физике, 2012

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Прибор, предназначенный для измерения температуры тела, — это:

линейка

2) термометр

3) амперметр

4) барометр

5) динамометр

2. В момент времени $t_0 = 0$ с два тела начали двигаться вдоль оси Ox. Если их координаты с течением времени изменяются по законам $x_1 = 4t + 1,6t^2$ и $x_2 = -12t + 2,1t^2$ (x_1, x_2 — в метрах, t — в секундах), то тела встретятся через промежуток времени Δt , равный:

1) 10 c

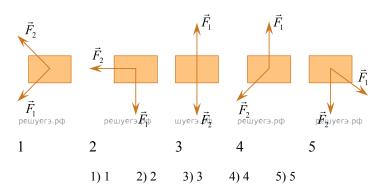
2) 16 c

3) 24 c

1) 32 c 5) 4

3. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=30$ км/ч, второй — $<v_2>=33$ км/ч, третий — $<v_3>=15$ км/ч, то всю трассу велосипедист проехал со средней скоростью <v> пути , равной:

1) 26 км/ч


2) 25 км/ч

3) 24 км/ч

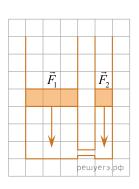
4) 23 км/ч

5) 22 км/ч

4. К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение a тело приобретет в ситуации, обозначенной на рисунке цифрой:

5. Камень бросили горизонтально с некоторой высоты со скоростью, модуль которой $v_0 = 20$ м/с. Через промежуток времени $\Delta t = 3$ с от момента броска модуль скорости камня v будет равен:

1) 27 m/c

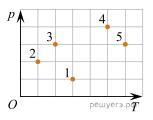

2) 30 m/c

3) 36 m/c

4) 46 m/c

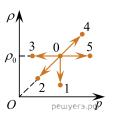
5) 55 m/c

6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы $F_2=3\,$ H, то для удержания системы в равновесии модуль силы F_1 должен быть равен:


7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л
1	280	233	10
2	320	266	10
3	340	283	10
4	360	299	10
5	380	316	10

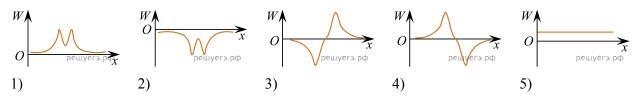
Такая закономерность характерна для процесса:


- 1) циклического
- 2) изохорного
- 3) адиабатного
- 4) изобарного
- 5) изотермического

8. На p-T диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5

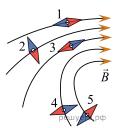
9. На рисунке изображена зависимость плотности ρ от давления p для пяти процессов с идеальным газом, масса которого постоянна. Изохорное охлаждение газа происходит в процессе:


1)
$$0-1$$
 2) $0-2$ 3) $0-3$ 4) $0-4$ 5) $0-5$

10. Если масса электронов, перешедших на эбонитовую палочку при трении ее о шерсть, $m = 36.4 \cdot 10^{-20}$ кг, то палочка приобретет заряд q равный:

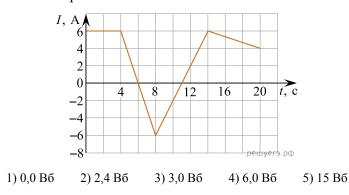
- 1) -16 нКл
- 2) -26 нКл
- 3) -30 нКл
- 4) -32 нКл
- 5) -64 нКл

11. Точечный отрицательный заряд q_0 движется параллельно оси Ox, проходящей через неподвижный точечный положительный заряд q_1 и неподвижный точечный отрицательный заряд q_2 (см. рис.). Если $q_2=-q_1$, то график зависимости потенциальной энергии взаимодействия W заряда q_0 с неподвижными зарядами от его координаты x приведен на рисунке, обозначенном цифрой:

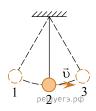

Примечание: влиянием неподвижных зарядов на траекторию движения q_0 пренебречь. Условие уточнено редакцией РЕШУ ЦТ.

1) 1 2) 2 3) 3 4) 4 5) 5

12. Пять резисторов, сопротивления которых $R_1 = 120$ Ом, $R_2 = 30$ Ом, $R_3 = 15$ Ом, $R_4 = 60$ Ом и $R_5 = 24$ Ом, соединены параллельно и подключены к источнику постоянного тока. Если сила тока в источнике I = 6 А, то в резисторе R_2 сила тока I_2 равна:

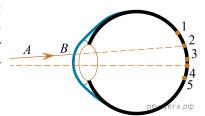

1) 1,2 A 2) 2,0 A 3) 3,5 A 4) 4,6 A 5) 4,8 A

13. В магнитное поле, линии индукции \vec{B} которого изображены на рисунке, помещены небольшие магнитные стрелки, которые могут свободно вращаться. Южный полюс стрелки на рисунке светлый, северный — темный. В устойчивом положении находится стрелка, номер которой:



1) 1 2) 2 3) 3 4) 4 5) 5

14. На рисунке изображен график зависимости силы тока I в катушке индуктивности от времени t. Если индуктивность катушки L=2.5 Гн, то собственный магнитный поток Φ , пронизывающий витки катушки, в момент времени t=2 с равен:

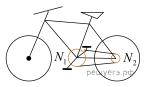

15. Математический маятник совершает свободные гармонические колебания. Точки 1 и 3 — положения максимального отклонения груза от положения равновесия (см. рис.). Если в точке 1 фаза колебаний маятника $\varphi_I = 0$, то в точке 2 фаза колебаний φ_2 будет равна:

Условие уточнено редакцией РЕШУ ЦТ.

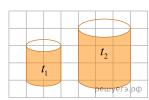
1) 0 2)
$$\frac{\pi}{2}$$
 3) $\frac{2\pi}{3}$ 4) π 5) 2π

16. Точечный источник света находится на главной оптической оси глаза на расстоянии наилучшего видения ($L=25\,$ см) при нормальном зрении. Если луч света AB, идущий от источника, пройдет через точку, обозначенную цифрой ..., то у человека дефект зрения — дальнозоркость.

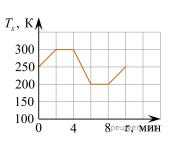
Условие уточнено редакцией РЕШУ ЦТ.

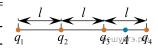

17. Катод фотоэлемента облучается фотонами энергия которых E=5 эВ. Если работа выхода электрона с поверхности фотокатода $A_{\rm BЫX}=4$ эВ, то задерживающее напряжение U_3 , равно:

1) 1 B 2) 2 B 3) 4 B 4) 5 B 5) 9 B

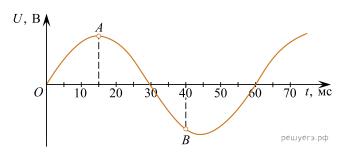

18. Атомный номер железа Z=26, а удельная энергия связи одного из его изотопов $\varepsilon=8,79~{\rm M}{\rm эB}/{\rm H}$ нуклон. Если энергия связи нуклонов в ядре этого изотопа $E_{\rm CB}=510~{\rm M}{\rm эB}$, то число нейтронов N в ядре равно:

1) 12 2) 16 3) 27 4) 32 5) 42


19. Диаметр велосипедного колеса d=70 см, число зубьев ведущей звездочки $N_1=28$, ведомой — $N_2=24$ (см. рис.). Чтобы ехать с постоянной скоростью, модуль которой $V=12~{\rm KM/Y}$, велосипедист должен равномерно крутить педали с частотой v равной ... **об/мин**.


- **20.** К бруску, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k=20 Н/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l=140 мм). Если длина пружины в недеформированном состоянии $l_0=100$ мм, а модуль ускорения бруска a=1,25 м/с 2 , то масса m бруска равна ... Γ .
- **21.** На дне вертикального цилиндрического сосуда, радиус основания которого R=12 см, неплотно прилегая ко дну, лежит кубик. Длина стороны кубика a=9 см. Если минимальный объем воды ($\rho_{\rm B}=1,00~{\rm г/cm^3}$), которую нужно налить в сосуд, чтобы кубик начал плавать, $V_{\rm min}=550~{\rm cm^3}$, то масса m кубика равна ... Γ .
- **22.** На невесомой нерастяжимой нити длиной l=72 см висит небольшой шар массой M=52 г. Пуля массой m=8 г, летящая горизонтально со скоростью $\vec{\upsilon}_0$, попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости υ_0 пули, равном ...**м/с**.
- **23.** Идеальный одноатомный газ, начальный объем которого $V_1 = 0.8 \text{ м}^3$, а количество вещества остается постоянным, находится под давлением $p_1 = 1.0 \cdot 10^5 \text{ Па.}$ Газ нагревают сначала изобарно до объема $V_2 = 4.0 \text{ м}^3$, а затем продолжают нагревать при постоянном объеме. Если конечное давление газа $p_2 = 3.0 \cdot 10^5 \text{ Па}$, то количество теплоты, полученное им при переходе из начального состояния в конечное равно ... **МДж**.
- **24.** Два однородных цилиндра (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого цилиндра $t_1 = 23$ °C, а второго $t_2 = 58$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t цилиндров равна ... °C.

25. На рисунке изображен график зависимости температуры $T_{\rm X}$ холодильника тепловой машины, работающей по циклу Карно, от времени τ . Если температура нагревателя тепловой машины $T_{\rm H}=127$ °C, то максимальный коэффициент полезного действия $\eta_{\rm max}$ машины был равен ... %.


26. Четыре точечных заряда $q_1 = 5$ нКл, $q_2 = -0.9$ нКл, $q_3 = 0.5$ нКл, $q_4 = -2.0$ нКл расположены в вакууме на одной прямой (см. рис.). Если расстояние между соседними зарядами l = 60 мм, то в точке A, находящейся посередине между зарядами q_3 и q_4 , модуль напряженности E электростатического поля системы зарядов равен ... к \mathbf{B}/\mathbf{m} .

27. Аккумулятор, ЭДС которого ε = 1,5 В и внутреннее сопротивление r = 0,1 Ом, замкнут нихромовым (c = 0,46 кДж/(кг · K) проводником массой m = 36,6 г. Если на нагревание проводника расходуется α = 60% выделяемой в проводнике энергии, то максимально возможное изменение температуры $\Delta T_{\rm max}$ проводника за промежуток времени Δt = 1 мин равно ... **К**.

28. Тонкое проволочное кольцо радиусом r = 4,0 см и массой m = 98,6 мг, изготовленное из проводника сопротивлением R = 90 мОм, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x = kx$, где k = 2,0 Тл/м, x — координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0 = 5,0$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... **см**.

29. Напряжение на участке цепи изменяется по гармоническому закону (см. рис.). В момент времени $t_{\rm A}=15$ мс напряжение на участке цепи равно $U_{\rm A}$, а в момент времени $t_{\rm B}=40$ мс равно $U_{\rm B}$. Если разность напряжений $U_A-U_B=50$ В, то действующее значение напряжения $U_{\rm T}$ равно ... В.

30. На дифракционную решетку падает нормально параллельный пучок монохроматического света длиной волны $\lambda=500$ нм. Если максимум пятого порядка отклонен от перпендикуляра к решетке на угол $\theta=30,0^{\circ}$, то каждый миллиметр решетки содержит число N штрихов, равное